%\iffalse
%<*copyright>
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Acroflex.sty package,                                %%
%% Copyright (C) 2008 -- 2016  D. P. Story              %%
%%   dpstory@acrotex.net                                %%
%%                                                      %%
%% This program can redistributed and/or modified under %%
%% the terms of the LaTeX Project Public License        %%
%% Distributed from CTAN archives in directory          %%
%% macros/latex/base/lppl.txt; either version 1 of the  %%
%% License, or (at your option) any later version.      %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%</copyright>
%<package>\NeedsTeXFormat{LaTeX2e}[1997/12/01]
%<package>\ProvidesPackage{acroflex}
%<package> [2020/08/07 v1.7 AcroFLeX: AcroTeX and Adobe Flex (dps)]
%<*driver>
\documentclass{ltxdoc}
\usepackage[colorlinks,hyperindex]{hyperref}
\begin{document}
\def\AcroFLeX{AcroF\kern-.1667em\lower.5ex\hbox{L}\kern-.3eme\kern-.125emX\@}
  \GetFileInfo{acroflex.sty}
  \title{%
    \texorpdfstring
    {\AcroFLeX: Merging {Acro\negthinspace\TeX} and FLEX}
    {AcroFLeX: Merging AcroTeX and FLEX}}
  \author{D. P. Story\\
    Email: \texttt{dpstory@acrotex.net}}
  \date{processed \today}
  \maketitle
  \tableofcontents
  \let\Email\texttt
  \DocInput{acroflex.dtx}
  \PrintIndex
\end{document}
%</driver>
% \fi
% \MakeShortVerb{|}
% \StopEventually{}
%
% \DoNotIndex{\def,\edef,\gdef,\xdef,\global,\long,\let}
% \DoNotIndex{\expandafter,\string,\the,\ifx,\else,\fi}
% \DoNotIndex{\csname,\endcsname,\relax,\begingroup,\endgroup}
% \DoNotIndex{\DeclareTextCommand,\DeclareTextCompositeCommand}
% \DoNotIndex{\space,\@empty,\special}
%
%    \begin{macrocode}
%<*package>
%    \end{macrocode}
%
% \section{Introduction}
% 
% \changes{v1.7}{2020/08/07}{Package author declares this package is obsolete as of December 2020,
% this is the month Adobe withdraws support for Flash Player (FLV,SWF, etc).}
%
% The word \textbf{\AcroFLeX} is meant to convey a merging of two computer technologies:
% \begin{itemize}
% \item \textbf{Acro}: connotes both \textbf{Adobe Acrobat} (\textbf{Adobe Reader})
%  and \textbf{{Acro\negthinspace\TeX}} (as in the
% \textbf{{Acro\negthinspace\TeX} eDucation Bundle} or, just \textbf{AeB}).
% \item \textbf{F\kern-.1667em\lower.5ex\hbox{L}\kern-.3eme\kern-.125emX\@}: connotes
%       \textbf{Adobe FLEX 3}. FLEX 3 is used to create SWF files to interact with the user.
%       In the case of graphing, plotting information is passed from Acrobat, via JavaScript,
%       to the Flash widget. ActionScript receives the data, plots the points, and
%       connects them with a smooth curve or a straight line segment.
% \end{itemize}
% Acrobat 9 Pro introduces the rich media annotation which plays FLV movies
% and SWF files natively. Acrobat also provides a scripting bridge
% between JavaScript for Acrobat, and ActionScript, the scripting
% language of Flash player. This bridge enables the PDF and the
% Flash widget, embedded in the rich media annotation, to communicate. The scripting bridge
% opens up wonderful opportunities for application to the education
% sector. The graphing of {\AcroFLeX} is one such application of the new
% PDF-Flash connection to education.
%
% \textbf{{\AcroFLeX}} uses the commercial product Adobe FLEX Builder~3 and
% FLEX~3 SDK to produce Flash widgets, and the AeB
% to create PDF documents with appropriate JavaScript to communicate
% with the Flash widget. FLEX Builder~3 is currently free for students
% and educators, the FLEX 3 SDK is free to all.
%
% This style file defines some basic controls for
% \textbf{{\AcroFLeX} Graphing} for controlling graphical SWF files
% for graphing.
%
% These commands are general {\LaTeX} commands, that require no special driver, so
% they can be used by, for example, pdftex; however, we use SWF files to produce
% the graphing screen with the built-in ActionScript to communicate with the PDF.
% For this, you will need Acrobat 9 Pro. In that case, you might as well use the
% Acrobat Distiller to produce your PDF, but it is not necessary.
%
% \medskip\noindent
% Let's begin with a declaration of the {\AcroFLeX} logo.
%    \begin{macrocode}
\RequirePackage{rmannot}[2016/02/01]
%    \end{macrocode}
%\changes{v1.6}{2015/10/13}{Save catcodes of subscript and superscript, both
% of these are used in ordinary characters in the file.}
% Change catcodes of subscript and superscript to other.
%    \begin{macrocode}
\edef\af@subscriptCat{\the\catcode`\_}
\edef\af@superscriptCat{\the\catcode`\^}
\def\af@restoreCats{%
    \catcode`\_=\af@subscriptCat
    \catcode`\^=\af@superscriptCat
}
\catcode`\_=12\relax \catcode`\^=12\relax
\def\AcroFLeX{%
    AcroF\kern-.1667em\lower.5ex\hbox{L}\kern-.3eme\kern-.125emX\@}
%    \end{macrocode}
%    \begin{macro}{\pathToAcroFlex}
% Set the path to {\AcroFLeX} widget, \texttt{AcroFlex.swf}, that actually does the
% graphing.
%    \begin{macrocode}
\newcommand{\pathToAcroFlex}[1]{\def\af@pathToAcroFlex{#1}%
    \ifx\af@pathToAcroFlex\@empty
    \PackageError{acroflex}{%
        You must specify a full path to AcroFlex.swf}{}\else
    \saveNamedPath{acroflexWidget}{\af@pathToAcroFlex/AcroFlex.swf}\fi
}
\def\af@pathToAcroFlex{}
\@onlypreamble{\pathToAcroFlex}
%    \end{macrocode}
%    \end{macro}
% \paragraph*{Define package options.}
%    \begin{macro}{lang}
% We offer up a single package option, \texttt{lang}. The only languages supported
% at this time are \texttt{english} and \texttt{german}. Additional languages may be supported in the
% future.
%    \begin{macrocode}
\define@choicekey*+{acroflex.sty}{lang}[\val\nr]{english,german}
{%
    \ifcase\nr\relax
        \def\af@lang@type{afcustom_us.def}
    \or
        \def\af@lang@type{afcustom_de.def}
    \else
        \def\af@lang@type{afcustom.def}
    \fi
}{\PackageWarning{acroflex}{Bad choice for lang, permissible values
are english and german. No lang key is equivalent to english. Try again}}
\def\af@lang@type{afcustom.def}
%    \end{macrocode}
%    \end{macro}
% \paragraph*{Process the options.}
% We process our meager number of options here.
%    \begin{macrocode}
\ProcessOptionsX
%    \end{macrocode}
% \paragraph*{Input Configuration File.} At this point, we input the configuration file. The
% major entry, and probably the only entry in this file is the \cs{pathToAcroFlex}. The file
% should contain a line of code like this one:
%\begin{verbatim}
%   \pathToAcroFlex{c:/acrotex/aebpro/acroflex/swf}
%\end{verbatim}
%    \begin{macrocode}
\InputIfFileExists{acroflex.cfg}{}{}
%    \end{macrocode}
%
% \section{Graphing a Single Function}
%
% This section describes the graphing screen and its controls.
%
% \subsection{Some Initial Parameters}
%
% Should you wish to use an {\AcroFLeX} graphic in your PDF, you will need to declare
% several parameters for each graphic: \cs{dimScreenGraph} and \cs{graphName},
% these are the rich media annotation dimensions, the rich media annot number of this annot
% on this page, and a unique name (unique to the document) for the graph.
%
% You also need to declare a default function, if different from the one set by this package,
% the default domain/range of $x$ and $y$ (the graph view window), and the default domain
% of parameter equations (this last is options if no parametric equations are to be used).
%
% \paragraph{Setting the Dimensions of the Annotation}
%
%    \begin{macro}{\dimScreenGraph}
% This is a convenience command for storing the dimensions of the Flash widget. It assumes
% you do not resize using \cs{resizebox} or \cs{scalebox}. The command defines two
% commands available to the document author, these are \cs{hScreenGraph} and
% \cs{vScreenGraph}, for the width and height respectively.
%    \begin{macrocode}
\newcommand{\dimScreenGraph}[2]{{%
    \setlength{\dimen@}{#1}\xdef\hScreenGraph{\the\dimen@}%
    \setlength{\dimen@}{#2}\xdef\vScreenGraph{\the\dimen@}%
}}
%    \end{macrocode}
%    \end{macro}
%
% \paragraph{Setting the Name of the Graph}
%
%    \begin{macro}{\graphName}
% Each graphing screen must have a unique (base)name, the name is specified
% using the command \cs{graphName}; for example \verb!\graphName{mygraph}!
% specifies the base name for the next graphing screen. This name is use
% in creating the control for the graphing screen (a Flash widget).
%
%    \begin{macrocode}
\newcommand{\graphName}[1]{\def\afgraphName{#1}}
%    \end{macrocode}
%    \end{macro}
%    \begin{macro}{\defaultFunction}
% Declare the default function to appear in the \cs{fileInputField} on startup
% or on reset. The function takes two arguments, the first is a display version of
% the function, the second is a proper JavaScript form of the function. The default
% is \verb!\defaultFunction{x^2}!
%    \begin{macrocode}
\newcommand{\defaultFunction}[1]{\def\af@DefaultFunction{#1}}
\defaultFunction{x^2}
%    \end{macrocode}
%    \end{macro}
%
% \paragraph{Setting the View Screen Dimensions: Range/Domain}
%
%    \begin{macro}{\defaultDomRng}
%    \begin{macro}{\defaultDomP}
% Set the default domain and range of the default function. These values will appear
% on start-up, and when the graph is cleared.
%    \begin{macrocode}
\def\defaultDomRng#1#2#3#4{%
    \def\af@DefaultDomMin{#1}\def\af@DefaultDomMax{#2}%
    \def\af@DefaultRngMin{#3}\def\af@DefaultRngMax{#4}%
}
\def\defaultDomP#1#2{%
    \def\af@DefaultDomMint{#1}\def\af@DefaultDomMaxt{#2}%
}
%    \end{macrocode}
% We set the default domain and range to correspond with the
% default function.
%    \begin{macrocode}
\defaultDomRng{-2}{2}{0}{4}
\defaultDomP{0}{2*PI}
%    \end{macrocode}
%    \end{macro}
%    \end{macro}
%
% \subsection{The Graphing Screen and its Controls}
%
% Here, we describe the graphing screen and its controls. The graphing screens and
% its controls may be arranged on the page in any way the document author wishes.
%
% \subsubsection{The Graphing Screen}
%
% The graphing screen is the centerpiece of the {\AcroFLeX} graphing system.
%
%    \begin{macro}{\graphScreen}
%
% The \cs{graphScreen} command is just the \cs{rmAnnot} command with the
% fourth argument set to the \texttt{acroflexWidget}. The command takes
% three parameters, each just passed to \cs{rmAnnot}: The first is optional
% that sets the key-value pairs, an important one is \texttt{poster=afposter}
% to get the famous \AcroFLeX{} logo inserted as the opster; the second
% is the width; the third is the height. The widget resizes itself, so the choice
% of the dimensions is up to the document author.
%
% If \cs{dimSreenGraph} is used then you can simply use the dimensions declared there;
% for example,
%\begin{verbatim}
%   \dimScreenGraph{186bp}{186bp*3/4}
%   ...
%   \graphScreen[poster=aflogo]{\hScreenGraph}{\vScreenGraph}
%\end{verbatim}
% Note the use of calculated height, three-fourths of the width. \cs{graphScreen} can be,
% in turn, be resized using \cs{resizebox} or \cs{scalebox}.
%
%    \begin{macrocode}
\newcommand{\graphScreen}[3][]{\rmAnnot[#1,%
    name=afRM\afgraphName]{#2}{#3}{acroflexWidget}}%
%    \end{macrocode}
%    \end{macro}
%    \begin{macro}{\iconFloatGraphScreen}
% Should you wish to create a graphing screen in a floating window, use the
% \cs{iconFloatGraphScreen}. It takes three arguments, the first one is optional
% and is passed to the first argument the underlying \cs{graphScreen}. A typical
% first argument is a poster key value: \texttt{poster=aflogo}. The second two are
% dimensions (width and height). We use \cs{resizebox} from the graphicx package.
% The \cs{resizebox} can take an exclamation point (!) as its arguments, in this
% case, the object will be resized to keep its aspect ratio. See the documentation
% of \cs{resizebox} for more details. Below is an example,
%\begin{verbatim}
%   \iconFloatGraphScreen[poster=aflogo]{40bp}{!}
%\end{verbatim}
% The rich media annotation has a transparent button on top of it. The poster of the annotation
% can be see through the button. Pressing on the button activates, or deactivates the annotation.
%
% The default is not to allow the user to close the window or go into full screen mode, however
% by executing\DescribeMacro{\allowFSFloatGS} \cs{allowFSFloatGS} before the
% \cs{iconFloatGraphScreen} command, we allow for full screen, while
% \DescribeMacro{\defaultFloatGS} \cs{defaultFloatGS} returns to the default state.
%    \begin{macrocode}
\newcommand{\allowFSFloatGS}{\def\af@passcontext{\@gobble}}
\newcommand{\defaultFloatGS}{\def\af@passcontext{passcontext}}
%    \end{macrocode}
% We set the default value, we do no allow full screen.
%    \begin{macrocode}
\defaultFloatGS
%    \end{macrocode}
% Now for the \cs{iconFloatGraphScreen} command
%    \begin{macrocode}
\newcommand{\iconFloatGraphScreen}[3][]{%
    \makebox[0pt][l]{%
    \resizebox{#2}{#3}{%
%    \end{macrocode}
% Here is the graphing screen
%    \begin{macrocode}
    \graphScreen[#1,windowed,\af@passcontext,deactivated=pageclose
        ]{\hScreenGraph}{\vScreenGraph}}}%
    \resizebox{#2}{#3}{%
%    \end{macrocode}
% And the button that overlays it
%    \begin{macrocode}
        \pushButton[\S{S}\H{N}\autoCenter{n}\W0\BG{}\BC{}
        \TU{\tt@iconFloatGraphScreen}\A{\JS{%
            var rm = this.getAnnotRichMedia(%
                this.pageNum, "afRM\afgraphName");\r
            rm.activated=!rm.activated;
        }}]{float\afgraphName Btn-\therm@Cnt}{\hScreenGraph}
            {\vScreenGraph}}%
}
\newcommand{\tticonFloatGraphScreen}[1]{%
    \def\tt@iconFloatGraphScreen{#1}}
\tticonFloatGraphScreen{Click to view graphing screen,
    click again to hide graphing screen.}
%    \end{macrocode}
%    \end{macro}
%
% \subsubsection{Various Controls}
%
% The graphing screen, obviously, graphs functions of the form $ y = f(x) $.  The user
% must have a way of entering the functional part, the $f(x)$. \cs{fileInputField}
% is used for this purpose. The \cs{graphBtn} is used to graph the function, while
% \cs{graphClrBtn} is used to clear the graph and deactivate the Flash widget.
%
% The domain of the variable $x$ is specified though the commands
% \cs{domMin} and \cs{domMax}; while the range of values on
% the $y$ axis is specified by \cs{rngMin} and \cs{rngMax}. The number of points
% that are plotted can be specified through \cs{numPoints}.
%
% \paragraph{The Input Function.}
%    \begin{macro}{\funcInputField}
% The parameters for all the above mentioned functions, with the exception of
% \cs{afDefaultFunction}, take three parameters generally described below:
%
% \begin{enumerate}
% \item[\texttt{[\#1]}:] optional arguments to modify appearance of the form field
% \item[\texttt{\#2}:] the width of the form field
% \item[\texttt{\#3}:]  the height of the form field
% \end{enumerate}
% The definitions below use two new keys, \cs{nuDV} and \cs{nuV}, to avoid the use
% of unicode when the unicode option of hyperref has been invoked. The initial and
% default values of the function input field may contain symbols like \texttt{\string^}
% that hyperref does not like and strips out. These two keys are also used in
% \cs{functionSelect} below, for the same reason.
%    \begin{macrocode}
\newcommand{\funcInputField}[3][]{\makebox[0pt][l]{%
    \textField[%
        \nuDV{\af@DefaultFunction}\nuV{\af@DefaultFunction}
        \F{\FHidden}\Ff{\FfReadOnly}
    ]{\afgraphName theHiddenFunction}{1bp}{1bp}}%
    \textField[%
        \BC{0 0 0}\nuDV{\af@DefaultFunction}\nuV{\af@DefaultFunction}
          \TU{\tt@funcInputField}#1\AA{\AAFormat{%
            \formatFunctionInput{"\afgraphName theHiddenFunction"}}
            \AAKeystroke{\keystrokeFunctionInput}
          }%
    ]{\afgraphName theFunction}{#2}{#3}%
}
\newcommand{\ttfuncInputField}[1]{%
    \def\tt@funcInputField{#1}}
\ttfuncInputField{Enter any of the following for expressions:\r
\space\space1. A function of x of the form f(x);\r
\space\space2. A polar function of t of the form f(t);\r
\space\space3. A set of parametric functions of t of the form f(t);g(t)
\r\space\space\space\space\space(separated by a semi-colon);\r
\space\space4. A list of points, (a1,b1);(a2,b2);...;(an,bn)\r
\space\space\space\space\space(separated by semi-colons).
}
%    \end{macrocode}
% I originally named the previous macro definition \cs{fileInputField}. My bad!
% In case there is someone out there that uses this package, I'll let
% \cs{fileInputField} to \cs{funcInputField}.
%    \begin{macrocode}
\let\fileInputField\funcInputField
%    \end{macrocode}
%    \end{macro}
%    \begin{macro}{\formatFunctionInput}
% \cs{formatFunctionInput} supplies format event for the
% \cs{funcInputField}. Then the user enters a new function, the JavaScript function
% \texttt{formatFunctionInput} executes \texttt{ParseInput} (from \textsf{exerquiz}), and places it
% in the hidden function field.
%    \begin{macrocode}
\def\formatFunctionInput#1{%
    try{ formatFunctionInput(#1) } catch(e){};
}
\def\keystrokeFunctionInput{%
    try{ keystrokeFunctionInput() } catch(e){};
}
%    \end{macrocode}
%    \end{macro}
% \paragraph{The Curve Select Combo Box.}
%    \begin{macro}{\functionSelect}
%    \begin{macro}{\initFuncSelect}
%    \begin{macro}{\savedelSelBtn}
% This is an optional combo box for selecting curves and points to graph.
% Note, this drop down list should not overlay the graphing widget, the widget
% is on top, and the list cannot be seen.
%    \begin{macrocode}
\newcommand{\afCurve}[1]{\def\afcurve{#1 }\def\afcurvei{#1}}
\afCurve{Curve}
\newcommand{\afPoint}[1]{\def\afpoint{#1 }\def\afploti{#1}}
\afPoint{Point}
\newcommand{\afUnused}[1]{\def\afunused{#1}}
\afUnused{--unused}
%    \end{macrocode}
% Any re-definitions should take place in the preamble only!
%    \begin{macrocode}
\@onlypreamble\afCurve
\@onlypreamble\afPoint
\@onlypreamble\afUnused
%    \end{macrocode}
% The listing of the drop-down menu. To begin with, there are eight
% menu items: four for curves, and four for plotted points.
%    \begin{macrocode}
\newcommand{\initFuncSelect}[1]{\def\af@initializeFuncSelect{#1}}
\initFuncSelect{%
    [(\af@DefaultFunction)(\afcurve1)]%
    [(<\afcurve2\afunused>)(\afcurve2)]%
    [(<\afcurve3\afunused>)(\afcurve3)]%
    [(<\afcurve4\afunused>)(\afcurve4)]%
    [(<\afpoint1\afunused>)(\afpoint1)]%
    [(<\afpoint2\afunused>)(\afpoint2)]%
    [(<\afpoint3\afunused>)(\afpoint3)]%
    [(<\afpoint4\afunused>)(\afpoint4)]}
%    \end{macrocode}
% The combo box that displays the above items. On selection,
% we populate the \texttt{theFunction} field.
%    \begin{macrocode}
\newcommand{\functionSelect}[3][]{%
    \comboBox[\TU{\tt@functionSelect}#1\Ff{\FfCommitOnSelChange}
    \nuDV{\af@DefaultFunction}\nuV{\af@DefaultFunction}
    \AA{\AAKeystroke{%
    if (!event.willCommit) {\r\t
        this.getField(
            "\afgraphName theFunction").value=event.changeEx;\r
    }}}]{\afgraphName ComboSelect}{#2}{#3}{\af@initializeFuncSelect}%
}
\newcommand{\ttfunctionSelect}[1]{%
    \def\tt@functionSelect{#1}}
\ttfunctionSelect{Enter a function on \afcurvei1--\afcurvei4, or
    a list of points on \afploti1--\afploti4.}
%    \end{macrocode}
% Saves the current function to the list, shift-click deletes
% the current list item, and returns it to its default.
%    \begin{macrocode}
\newcommand{\savedelSelBtn}[3][]{%
    \pushButton[\TU{\tt@savedelSelBtn}#1
        \A{\JS{saveDelSelAction("\afgraphName");
    }}]{\afgraphName savedelSelectBtn}{#2}{#3}%
}
\newcommand{\ttsavedelSelBtn}[1]{\def\tt@savedelSelBtn{#1}}
\ttsavedelSelBtn{Click to save current function to list, shift-click
    to delete the current function from list}
%    \end{macrocode}
%    \end{macro}
%    \end{macro}
%    \end{macro}
% \paragraph{The Graphing Button.}
%    \begin{macro}{\graphBtn}
% Clicking on this button when the
% rich media annot is not activated will activate it. Clicking on
% this button when the rich media annot is activate will cause the
% function in the \cs{fileInputField} to be graphed.
%    \begin{macrocode}
\newcommand{\graphBtn}[3][]{%
    \pushButton
        [\BC{0 0 0}\CA{Graph It!}\TU{\tt@graphBtn}#1
        \A{\JS{graphBtnAction("\afgraphName",this.pageNum);
        }}]{\afgraphName graphIt}{#2}{#3}%
}
\newcommand{\ttgraphBtn}[1]{\def\tt@graphBtn{#1}}
\ttgraphBtn{Press to graph the function}
%    \end{macrocode}
%    \end{macro}
% \paragraph{The Clear Screen Button.}
%
%    \begin{macro}{\graphClrBtn}
%    \begin{macro}{\clearGraphJS}
% Click on this button and all fields
% associated with this graphing screen are reset. Shift click makes the
% AcroFlex widget deactivated.
%    \begin{macrocode}
\newcommand{\clearGraphJS}{%
    clearGraph("all","\afgraphName",this.pageNum);}
\newcommand{\graphClrBtn}[3][]{\pushButton[\BC{0 0 0}\CA{Clear}
    \A{\JS{\clearGraphJS}}\TU{\tt@graphClrBtn}#1
    ]{\afgraphName clearIt}{#2}{#3}%
}
\newcommand{\ttgraphClrBtn}[1]{\def\tt@graphClrBtn{#1}}
\ttgraphClrBtn{Click to clear graph, shift-click to deactivate the
    graphing screen}
%    \end{macrocode}
%    \end{macro}
%    \end{macro}
%
% \paragraph{The Domain the function is to be graphed over.}
%
%    \begin{macro}{\domMin}
%    \begin{macro}{\domMax}
% The lower endpoint of the interval over which the function is
% graphed.
%
%    \begin{macrocode}
\newcommand{\domMin}[3][]{\makebox[0pt][l]{%
    \textField[\nuDV{\af@DefaultDomMin}\nuV{\af@DefaultDomMin}
        \F{\FHidden}\Ff{\FfReadOnly}
        ]{\afgraphName theHiddenDom.min}{1bp}{1bp}}%
    \textField[\textSize{0}\nuV{\af@DefaultDomMin}
    \nuDV{\af@DefaultDomMin}\BC{0 0 0}\TU{\tt@domMin}#1\AA{%
    \AAKeystroke{\keystrokeDomRng{"\afgraphName theHiddenDom.min"}}
        \AAFormat{\formatVarIntervals{"\afgraphName theHiddenDom.min"}}
    }]{\afgraphName theDom.min}{#2}{#3}%
}
\newcommand{\ttdomMin}[1]{\def\tt@domMin{#1}}
\ttdomMin{Enter the minimum value for the variable x}
%    \end{macrocode}
% The upper endpoint of the interval over which the function is graphed.
%    \begin{macrocode}
\newcommand{\domMax}[3][]{\makebox[0pt][l]{%
    \textField[\nuDV{\af@DefaultDomMax}\nuV{\af@DefaultDomMax}
    \F{\FHidden}\Ff{\FfReadOnly}
    ]{\afgraphName theHiddenDom.max}{1bp}{1bp}}%
    \textField[\textSize{0}\nuV{\af@DefaultDomMax}
    \nuDV{\af@DefaultDomMax}\BC{0 0 0}\TU{\tt@domMax}#1\AA{%
    \AAKeystroke{\keystrokeDomRng{"\afgraphName theHiddenDom.max"}}
    \AAFormat{\formatVarIntervals{"\afgraphName theHiddenDom.max"}}
    }]{\afgraphName theDom.max}{#2}{#3}%
}
\newcommand{\ttdomMax}[1]{\def\tt@domMax{#1}}
\ttdomMax{Enter the maximum value for the variable x}
%    \end{macrocode}
%    \end{macro}
%    \end{macro}
% \paragraph{The interval on vertical axis what is to be displayed.}
%    \begin{macro}{\rngMin}
%    \begin{macro}{\rngMax}
% The lower endpoint of the interval on the $y$-axis that is displayed on the
% graphing screen.
%    \begin{macrocode}
\newcommand{\rngMin}[3][]{\makebox[0pt][l]{%
    \textField[\nuDV{\af@DefaultRngMin}\nuV{\af@DefaultRngMin}
    \F{\FHidden}\Ff{\FfReadOnly}
    ]{\afgraphName theHiddenRng.min}{1bp}{1bp}}%
    \textField[\textSize{0}\nuV{\af@DefaultRngMin}
    \nuDV{\af@DefaultRngMin}\BC{0 0 0}\TU{\tt@rngMin}#1\AA{%
    \AAKeystroke{\keystrokeDomRng{"\afgraphName theHiddenRng.min"}}
     \AAFormat{\formatVarIntervals{"\afgraphName theHiddenRng.min"}}
    }]{\afgraphName theRng.min}{#2}{#3}%
}
\newcommand{\ttrngMin}[1]{\def\tt@rngMin{#1}}
\ttrngMin{Enter the minimum value for the variable y}
%    \end{macrocode}
% The upper endpoint of the interval on the $y$-axis that is displayed on the
% graphing screen.
%    \begin{macrocode}
\newcommand{\rngMax}[3][]{\makebox[0pt][l]{%
    \textField[\nuDV{\af@DefaultRngMax}\nuV{\af@DefaultRngMax}
    \F{\FHidden}\Ff{\FfReadOnly}
    ]{\afgraphName theHiddenRng.max}{1bp}{1bp}}%
    \textField[\textSize{0}\nuV{\af@DefaultRngMax}
    \nuDV{\af@DefaultRngMax}\BC{0 0 0}\TU{\tt@rngMax}#1\AA{%
   \AAKeystroke{\keystrokeDomRng{"\afgraphName theHiddenRng.max"}}
     \AAFormat{\formatVarIntervals{"\afgraphName theHiddenRng.max"}}
    }]{\afgraphName theRng.max}{#2}{#3}%
}
\newcommand{\ttrngMax}[1]{\def\tt@rngMax{#1}}
\ttrngMax{Enter the maximum value for the variable y}
%    \end{macrocode}
%    \end{macro}
%    \end{macro}
% \paragraph{The Domain parametric equations is to be graphed over.}
%    \begin{macro}{\domMinP}
%    \begin{macro}{\domMaxP}
% The lower endpoint of the interval over which the function is graphed.
%    \begin{macrocode}
\newcommand{\domMinP}[3][]{\makebox[0pt][l]{%
    \textField[\nuDV{\af@DefaultDomMint}\nuV{\af@DefaultDomMint}
        \F{\FHidden}\Ff{\FfReadOnly}
        ]{\afgraphName theHiddenDom_t.min}{1bp}{1bp}}%
    \textField[\textSize{0}\nuV{\af@DefaultDomMint}
    \nuDV{\af@DefaultDomMint}\BC{0 0 0}\TU{\tt@domMinP}#1\AA{%
    \AAKeystroke{\keystrokeDomRng{"\afgraphName theHiddenDom_t.min"}}
    \AAFormat{\formatVarIntervals{"\afgraphName theHiddenDom_t.min"}}
    }]{\afgraphName theDom_t.min}{#2}{#3}%
}
\newcommand{\ttdomMinP}[1]{\def\tt@domMinP{#1}}
\ttdomMinP{Enter the minimum value for the variable t}
%    \end{macrocode}
% The upper endpoint of the interval over which the function is graphed.
%    \begin{macrocode}
\newcommand{\domMaxP}[3][]{\makebox[0pt][l]{%
    \textField[\nuDV{\af@DefaultDomMaxt}\nuV{\af@DefaultDomMaxt}
    \F{\FHidden}\Ff{\FfReadOnly}
    ]{\afgraphName theHiddenDom_t.max}{1bp}{1bp}}%
    \textField[\textSize{0}\nuV{\af@DefaultDomMaxt}
    \nuDV{\af@DefaultDomMaxt}\BC{0 0 0}\TU{\tt@domMaxP}#1\AA{%
    \AAKeystroke{\keystrokeDomRng{"\afgraphName theHiddenDom_t.max"}}
    \AAFormat{\formatVarIntervals{"\afgraphName theHiddenDom_t.max"}}
    }]{\afgraphName theDom_t.max}{#2}{#3}%
}
\newcommand{\ttdomMaxP}[1]{\def\tt@domMaxP{#1}}
\ttdomMaxP{Enter the maximum value for the variable t}
%    \end{macrocode}
%    \end{macro}
%    \end{macro}
%    \begin{macro}{\formatVarIntervals}
%    \begin{macro}{\keystrokeDomRng}
% These are format and keystroke functions that support the above
% domain and range commands.
%    \begin{macrocode}
\def\formatVarIntervals#1{%
    try{ formatVarIntervals(#1) } catch(e){};
}
\def\keystrokeDomRng#1{%
    if (event.willCommit) keystrokeDomRng(#1);
}
%    \end{macrocode}
%    \end{macro}
%    \end{macro}
% \paragraph{The Number of points to plot.}
%    \begin{macro}{\numPoints}
%    \begin{macro}{\defaultNumPoints}
% The number of points to use for plotting the specified function.
%    \begin{macrocode}
\newcommand{\defaultNumPoints}[1]{%
    \def\af@defaultNumPoints{#1}}
\defaultNumPoints{40}
\newcommand\numPoints[3][]{%
    \textField[\nuV{\af@defaultNumPoints}\nuDV{\af@defaultNumPoints}
    \Q1\BC{0 0 0}\TU{\tt@numPoints}#1\AA{%
    \AAKeystroke{if (event.willCommit) keystrokeNumPoints();}}
    ]{\afgraphName numNodes}{#2}{#3}%
}
\newcommand{\ttnumPoints}[1]{\def\tt@numPoints{#1}}
\ttnumPoints{Enter the number of points to plot}
%    \end{macrocode}
%    \end{macro}
%    \end{macro}
%
% \paragraph{Shifting the Graph Screen.}
% In this section we provide basic control for shifting the graph screen up and down,
% and left and right. Two new text fields are designed to set the amount of vertical
% or horizontal shifting.
%
%    \begin{macro}{\amtShift}
% Use this text field to enter the amount of horizontal or vertical shift.
%
% We have the usual three parameters, optional argument to change the appearance,
% the width of the form field, the height of the form field.
%    \begin{macrocode}
\newcommand{\defaultShiftAmt}[1]{%
    \def\af@defaultShiftAmt{#1}}
\defaultShiftAmt{1}
\newcommand{\amtShift}[3][]{%
    \textField[\nuV{\af@defaultShiftAmt}\nuDV{\af@defaultShiftAmt}\Q1
    \BC{0 0 0}\TU{\tt@amtShift}#1\AA{\AAKeystroke{%
        if (event.willCommit) keystrokeAmtShift();
    }}]{\afgraphName amtshift}{#2}{#3}%
}
\newcommand{\ttamtShift}[1]{\def\tt@amtShift{#1}}
\ttamtShift{Enter the amount to shift, horizontally or vertically}
%    \end{macrocode}
%    \end{macro}
%
% For the controls for initiating the shifting action, we can use forms or links. We'll begin
% by using links.
%    \begin{macro}{\hShiftL}
%    \begin{macro}{\hShiftR}
%    \begin{macro}{\vShiftD}
%    \begin{macro}{\vShiftU}
% Basic link to initiate the actions of shifting the viewing screen horizontally or vertically
% an amount equal to the entries in \cs{amtShift}.
%    \begin{macrocode}
\newcommand{\hShiftL}[2][]{%
    \setLinkText[#1\A{\JS{%
        shiftHorVert ("\afgraphName",this.pageNum,"h","-");
    }}]{#2}%
}
\newcommand{\hShiftR}[2][]{%
    \setLinkText[#1\A{\JS{%
        shiftHorVert ("\afgraphName",this.pageNum,"h","+");
    }}]{#2}%
}
\newcommand{\vShiftD}[2][]{%
    \setLinkText[#1\A{\JS{%
        shiftHorVert ("\afgraphName",this.pageNum,"v","-");
    }}]{#2}%
}
\newcommand{\vShiftU}[2][]{%
    \setLinkText[#1\A{\JS{%
        shiftHorVert ("\afgraphName",this.pageNum,"v","+");
    }}]{#2}%
}
%    \end{macrocode}
%    \end{macro}
%    \end{macro}
%    \end{macro}
%    \end{macro}
% \paragraph{The Zooming in and out.}
% Coming fresh off the success of the horizontal and vertical shifting commands, let's plough
% on to zooming in.
%    \begin{macro}{\zoomInOut}
% This push button control zooms out, with a click, or zoom in with a shift-click.
%    \begin{macrocode}
\newcommand{\zoomInOut}[3][]{%
    \pushButton[\BC{0 0 0}\CA{Zoom}\TU{\tt@zoomInOut}#1
    \A{\JS{%
        var shiftType = (event.shift) ? "+" : "-";\r
        zoomInOut ("\afgraphName",this.pageNum,shiftType);
    }}
    ]{\afgraphName zoominout}{#2}{#3}%
}
\newcommand{\ttzoomInOut}[1]{\def\tt@zoomInOut{#1}}
\ttzoomInOut{Click to zoom out, shift-click to zoom in}
%    \end{macrocode}
%    \end{macro}
%
% \subsection{Non-Interactive Graphing}
%
% Use the \cs{setLinkText} command to pass a function name, the number of points, and domain/range
% information to the graphing screen, without user input. This command is useful for tutorials
% that would like to create a graph for the student to inspect, or as part of a quiz.
%    \begin{macro}{\sgraphLink}
% The command \cs{sgraphLink} has four arguments, the first one is an optional argument
% to modify the appearance of the link; the second argument consist of key-value pairs that
% are options for the {\AcroFLeX} Graphing system; the third argument is the function of the
% semi-colon delimited list of points to be plotted; the fourth argument is the text to be used
% as the link.
%\begin{verbatim}
%   \sgraphLink[<appearance>]{<graph_key_vals>}{func|points}{<text>}
%\end{verbatim}
%\paragraph{Options for the Second Parameter.} We define and briefly discuss
% a series of keys for the second parameter.
%
%    \begin{macrocode}
%    \end{macrocode}
% \DescribeMacro{graph}
% Curves and points are graphed on chart series. This system uses \texttt{LinearSeries},
% \texttt{PlotSeries}, and \texttt{AreaSeries}. The {\AcroFLeX} graphing widget provides
% four series for each of these three. Values of \texttt{c1}, \texttt{c2}, \texttt{c3}, \texttt{c4} for this key graphs the data
% on a \texttt{LinearSeries}; values of \texttt{p1}, \texttt{p2}, \texttt{p3}, \texttt{p4} plot the data on a \texttt{PlotSeries};
% and values of \texttt{a1}, \texttt{a2}, \texttt{a3}, \texttt{a4} graphs the data on a \texttt{AreaSeries}.
%    \begin{macrocode}
\define@choicekey+{afsl}{graph}{c1,c2,c3,c4,p1,p2,p3,p4,%
    a1,a2,a3,a4}[c1]{\edef\afsl@graph{#1}}{\PackageWarning{acroflex}
    {Bad choice for the graph key, permissible values are
    c1, c2, c3,c4, p1, p2, p3, p4, a1, a2, a3, a4. Try again}}
%    \end{macrocode}
% \DescribeMacro{type}
% The type of curve this is, \texttt{cart} ($y=f(x)$), \texttt{para}
% ($x=f(t); y=g(t)$), or \texttt{polar} ($r = f(t)$). When defining a polar function
% using \cs{sgraphLink}, use \texttt{type=polar} to signal that the curve is a polar function.
% \changes{v1.6c}{2016/08/29}{Set defaults for type and connectwith}
%    \begin{macrocode}
\define@choicekey+{afsl}{type}{cart,para,polar}[cart]{%
    \edef\afsl@type{#1}}{\PackageWarning{acroflex}
    {Bad choice for the type key, permissible values are
    cart, para, and polar. Try again}}
\let\afsl@type\@empty
%    \end{macrocode}
% \DescribeMacro{connectwith}
% When the graph is either a \texttt{LinearSeries} or an
% \texttt{AreaSeries}, the points are connected. Use this key to
% specify how the points are to be connected. The default values
% for this key are as follows: for
% \texttt{graph=cart} it is \texttt{connectwith=curve}, and for
% \texttt{graph=para} it is \texttt{connectwith=segment}.
% Use this key to override these defaults. For parametric equations,
% \texttt{connectwith=curve} is not recommended, the results may not
% be good. Use of this key is recommended for \texttt{graph=cart}.
%    \begin{macrocode}
\define@choicekey+{afsl}{connectwith}{curve,segment}[curve]{%
    \edef\afsl@form{#1}}{\PackageWarning{acroflex}
    {Bad choice for the connectwith key, permissible values are
    curve and segment. Try again}}
\let\afsl@form\@empty
%    \end{macrocode}
% \DescribeMacro{noquotes}
% This key is a workaround for the case when the function or data is passed by
% JavaScript. Used when passing things that are already strings, such as \texttt{event.value}.
% An example of usage can be found in \texttt{afgraph.tex}.
%    \begin{macrocode}
\define@choicekey+{afsl}{noquotes}[\val\nr]{true,false}[true]{%
    \ifcase\nr\relax\def\af@quotes{}\or\def\af@quotes{"}\fi}
    {\PackageWarning{acroflex}
    {Bad choice for the noquotes key, permissible values are
    true and false. Try again}}
%    \end{macrocode}
% \DescribeMacro{points}
% Use this key to specify the number of points to generate from the function.
% The key is ignored if \texttt{PlotSeries} is used, and should not appear, or be set to zero.
%    \begin{macrocode}
\define@key{afsl}{points}[0]{\edef\afsl@nPoints{#1}}
%    \end{macrocode}
% \DescribeMacro{xInterval}
% An interval of numbers on the horizontal axis. This interval determines the
% domain over which the function of $x$ is to be graphed. The endpoints of this
% interval also determine the left and right boundaries of the viewing window.
%    \begin{macrocode}
\define@key{afsl}{xInterval}[]{\edef\afsl@xInterval{#1}}
%    \end{macrocode}
% \DescribeMacro{xPlot}
% (10/11/09) Added the \texttt{xPlot} key. With the \texttt{xInterval} key, the interval over which to
% plot the curve is bound to the scaling on the x-axis.  It is now desired to plot
% a graph over a smaller interval than the one on the x-axis, and \texttt{xPlot} will be used for
% that purpose; thus one can say \verb!xInterval={[-2,2]},xPlot={[-1,0]}!. If \texttt{xPlot}
% is not specified, then $\texttt{xPlot}=\texttt{xInterval}$.
%    \begin{macrocode}
\define@key{afsl}{xPlot}[]{\edef\afsl@xPlot{#1}}
%    \end{macrocode}
% \DescribeMacro{yInterval}
% An interval of numbers on the vertical axis. The endpoints of this
% interval also determine the lower and upper boundaries of the viewing window.
%    \begin{macrocode}
\define@key{afsl}{yInterval}[]{\edef\afsl@yInterval{#1}}
%    \end{macrocode}
% \DescribeMacro{tInterval}
% An interval of numbers on the parameter axis. This interval determines the
% domain over which a polar function and parametric equations are to be graphed.
% \texttt{xInterval} and \texttt{yInterval} determines the viewing window.
%    \begin{macrocode}
\define@key{afsl}{tInterval}[]{\edef\afsl@tInterval{#1}}
%    \end{macrocode}
% \DescribeMacro{populate}
% A Boolean value, which if \texttt{true}, signals \texttt{Graph\_xy()} or
% \texttt{Graph\_xyt()} to populate the interactive field controls. When
% no controls are provided for the graphing screen, populate should have a
% value of \texttt{false}.
%    \begin{macrocode}
\define@choicekey+{afsl}{populate}{true,false}[true]{%
    \edef\afsl@populate{#1}}{\PackageWarning{acroflex}
    {Bad choice for the populate key, permissible values are
    true and false. Try again}}
%    \end{macrocode}
% \DescribeMacro{wait}
% When using \cs{defineGraphJS} to create an action with multiple graph events,
% use \texttt{wait=true}. This setting gives the {\AcroFLeX} graphing widget to
% receive one set of plotting data before trying to digest another.
%    \begin{macrocode}
\define@choicekey+{afsl}{wait}{true,false}[true]{%
    \edef\afsl@wait{#1}}{\PackageWarning{acroflex}
    {Bad choice for the wait key, permissible values are
    true and false. Try again}}
%    \end{macrocode}
% \paragraph*{Set the defaults for all the keys.}
% All changes are local to each link, so we set global defaults whose values
% are not changed by the changes as a result of the passing key-value pairs
% through \cs{sgraphLink}.
%    \begin{macrocode}
\setkeys{afsl}{graph,points,xInterval,xPlot,yInterval,tInterval,%
    populate=false,type,connectwith,noquotes=false,wait=false}
%    \end{macrocode}
%    \begin{macro}{\sgraphLink}
% We finally come to the \cs{sgraphLink}.
%    \begin{macrocode}
\newcommand{\sgraphLink}[4][]{{%
    \defineGraphJS{#2}{#3}{\af@sglnkAction}%
    \setLinkText[#1\A{\JS{\af@sglnkAction}}]{#4}%
}}
%    \end{macrocode}
%    \end{macro}
%    \end{macro}
%    \begin{macro}{\defineGraphJS}
% The \cs{defineGraphJS} is the JS used to call the \texttt{Graph\_xy()} or \texttt{Graph\_xyt()}
% JavaScript function defined in this package. It uses the same key-value pairs as the second
% argument of \cs{sgraphLink}. The command can be used to construct links that graph several
% curves (or plots) with a link or form action. It can be integrated into the exerquiz quizzing system,
% using the new key \cs{AddAAKeystroke} of \cs{RespBoxMath}. The use of this key and this command is illustrated
% in the \texttt{acroflex.tex} demo file.
%\par\medskip\noindent
% The \texttt* optional first parameter signals to use \cs{edef} in the subsequent command
% \cs{af@defineGraphJS}.
%    \begin{macrocode}
\newcommand{\defineGraphJS}{\@ifstar{\let\AF@exDEF\edef\af@defineGraphJS}
    {\let\AF@exDEF\xdef\af@defineGraphJS}}
%    \end{macrocode}
% We continue \cs{defineGraphJS}: The first parameter are key-values of the
% \texttt{afsl} family; the second parameter is the function; the third is the
% name to assign the command being defined.
% modify the appearance of the link; the second parameter
%    \begin{macrocode}
\newcommand{\af@defineGraphJS}[3]{{\makeJSspecials
    \edef\af@tmp@exp{\noexpand\setkeys{afsl}{#1}}\af@tmp@exp
    \ifx\afsl@xPlot\@empty\let\afsl@xPlot\afsl@xInterval\fi
    \AF@exDEF#3{Graph_xytJS (\af@quotes#2\af@quotes,"\afsl@xInterval",%
    "\afsl@yInterval","\afsl@xPlot","\afsl@tInterval","\afsl@graph",%
    \afsl@populate,\afsl@wait,"\afsl@type","\afsl@form","\afgraphName",%
    \afsl@nPoints)}%
}}
%    \end{macrocode}
%    \end{macro}
%
% \section{Document JS in Support of \texorpdfstring{\protect\AcroFLeX}{AcroFleX}}
%
% Below are some text macros used in creating error messages. They may be redefined
% into better English, or another language. Use the definition file \texttt{afcustom.def}
% to make these re-definitions.
%    \begin{macrocode}
\defineJSStr{\af@badNumberMsg}{%
    The value input does not appear to be a number, please enter a
    number, or an expression that evaluates to a number.}
\defineJSStr{\af@negNumberMsg}{%
    The number of points is a positive integer, changing to a
    positive integer.}
\defineJSStr{\af@zeroNumberMsg}{%
    The number of points is a positive integer, changing to the
    default value of \af@defaultNumPoints.}
\defineJSStr{\af@negShiftMsg}{%
    The amount of shift is a positive number, changing to a positive
    number.}
\defineJSStr{\af@zeroShiftMsg}{%
    The amount of shift is a positive number, changing to the
    default value of 1.}
\defineJSStr{\af@saveDelSelAlerti}{%
    There is nothing in the function input text field.}
\defineJSStr{\af@saveDelSelAlertii}{%
    You have not defined any points to plot}
\defineJSStr{\af@graphBtnAlerti}{Undefined graph types}
%    \end{macrocode}
%    \begin{macrocode}
\begin{insDLJS*}[acroflexLoaded]{afgrfJS}
\begin{newsegment}{AF: AcroFLeX Graphing Bundle}
/*
        Document Level JavaScript
        AcroFLeX Graphing Bundle
        D. P. Story copyright 2008-\the\year
*/
var acroflexLoaded = true;
var _mathVars="xt";
var aGraphData = new Array();
var ck4PtsRe = /\(.+,.+\)/;
var badNumberMsg=\af@badNumberMsg;
var negNumberMsg=\af@negNumberMsg;
var zeroNumberMsg=\af@zeroNumberMsg;
var negShiftMsg=\af@negShiftMsg;
var zeroShiftMsg=\af@zeroShiftMsg;
var saveDelSelAlerti=\af@saveDelSelAlerti;
var saveDelSelAlertii=\af@saveDelSelAlertii;
var graphBtnAlerti=\af@graphBtnAlerti;
var scratchCounter=0;
var aTimeOutArray = new Array();
var afSuffixes = new Array("ComboSelect","theFunction",
    "amtShift","theDom","theRng", "theDom_t",
    "Rng_t","numNodes");
\end{newsegment}
\begin{newsegment}{AF: Graphing Functions}
%    \end{macrocode}
% \DescribeMacro{Graph\_xy} Graphs a function of a single variable in the rectangular
% coordinate system.
%
% The \texttt{Graph\_xy} function takes four or more arguments. In interactive
% mode, it takes four.
%\begin{enumerate}
%   \item \texttt{graph\_props}: (Needs Revision) This is a signal for the type of graphing requested.
%       \texttt{c1,...,c4} for continuous plotting; and \texttt{p1,...,p4} for discrete
%       plotting. There are four of these types.
%   \item \texttt{baseName}: The base name of the graphing environment. This is used to
%       build the field names for the controls, if any, on the page.
%   \item \texttt{pNum}: The page number of the target rich media annot. This together
%       with \texttt{baseName} is enough information to get the AnnotRichMedia object using
%       the \texttt{Doc.AnnotRichMedia} method.
%\end{enumerate}
% When in interactive mode, we get the function to be graphed, the domain of $x$
% the range of $y$, and the number of points to plot from form fields.
% \begin{itemize}
%   \item The function is input by the  user into the field \texttt{baseName+"theFunction"},
%         but we get the JS version from \texttt{baseName+"theHiddenFunction"}.
%         When the user enters a function, it is parsed, and changed into a proper JS
%         expression: \verb!2x^2sin(x)! becomes \verb!2*Math.pow(x,2)*Math.sin(x)!.
%
%   \item The domain and range values are input by the user through the fields, having field names of
%         \texttt{baseName+"theDom.min"}, \texttt{baseName+"theDom.max"}, \texttt{baseName+"theRng.min"},
%         and \texttt{baseName+"theRng.max"}, but we retrieve the values from hidden fields.
%         See \texttt{getDomRng} below for the listing of the hidden fields.
%         When the user enters domain/range info, this info is parsed and made into
%         property JS expressions. In this way, the user can enter symbolics like \texttt{PI}
%         or \texttt{sin(PI/3)}, or do arithmetic, like \texttt{2 + 1/3}.
%
%   \item The number of points to plot is obtained from \texttt{baseName+"numNodes"},
%         no preprocessing is used.
%
% \end{itemize}
%
% \noindent When the number of arguments is greater than four, we are in non-interactive
% mode. The 5th argument is the JS function to graph; the 6th is the number of
% points to plot; the 7th is an object containing the domain
%
% \paragraph{Notes on the Modes.} There are three modes of operation: interactive, populate,
% and silent.
%\begin{itemize}
% \item \textbf{Interactive:} This occurs when the user enters a
% function through the UI. In this case the number of arguments
% passed to \texttt{Graph\_xy} (or \texttt{Graph\_xyt}) is only four.
% The number of \texttt{arguments} is determined by the arguments
% object, and the switch \texttt{afInteractive} is set to
% \texttt{true}. For this mode
%
% The following controls are \emph{required}: \cs{fileInputField},
% \cs{graphBtn}, \cs{domMin}, \cs{domMax}, \cs{rngMin}, \cs{rngMax},
% and \cs{numPoints}. If parametric or polar graphs are to be used,
% then \cs{domMinP} and \cs{domMaxP} are also required. The other
% controls are \emph{optional}, \cs{graphClrBtn} (recommended),
% \cs{amtShift} (and \cs{hShiftL},
% \cs{hShiftR},\cs{vShiftD},\cs{vShiftU}) and \cs{zoomInOut}.
%
% \item \textbf{Populate:} This mode occurs when the graphing parameters
% are passed to \texttt{Graph\_xy} (or \texttt{Graph\_xyt}) by \cs{sgraphLink}
% (or some other command). All the essential information is passed as arguments,
% so the number of arguments is greater than four. The command initiating the
% graphing should set the \texttt{graph\_props.populate} to \texttt{true}. In this
% case the graphing data populate the required fields and the graph will be drawn.
% It is the document author's responsibility to only use populate on graphing screens
% that have all the required control fields. \texttt{Graph\_xy} (and \texttt{Graph\_xyt})
% checks the value of the \texttt{graph\_props.populate} property, and sets the switch
% \texttt{populate} to \texttt{true}.
%
% Populate behave exactly like interactive, but the graphing data is passed to it in pre-packaged
% for my the document author; the user, however, can manipulate the curve once it appears.
%
% The required controls are the same as the interactive mode.
%
% \item \textbf{Silent:} This is a non-interactive mode, there must be no controls other than
% \cs{graphClrBtn}.  Basically, the author prepares some pre-packaged graphs to be displayed
% to the user, without interaction. These may go along with a tutorial discussion symmetry,
% periodicity, tangent lines, etc.
%
%\end{itemize}
%    \begin{macrocode}
function Graph_xy(graph_props, baseName, pNum)
{
    _mathVars="x";
    var afInteractive = (arguments.length <= 3);
    if (afInteractive) {
        var f = this.getField(baseName+"theHiddenFunction").value;
%    \end{macrocode}
% If the file input field does not contain a Cartestian point $(a,b)$,
% but it does contain a semi-colon, we figure what is entered is a
% set of parametric equations.
%    \begin{macrocode}
        if ( !ck4PtsRe.test(f) && (f.indexOf(";")!=-1) ) {
            var dt = this.getField(baseName+"theDom_t.min");
            if ( dt == null ) {
                syntaxError(); return;
            }
            Graph_xyt(graph_props, baseName, pNum);
            return;
        }
        f = this.getField(baseName+"theHiddenFunction").value;
    }
    createGraphData(baseName);
    var which_graph=graph_props.graph;
    var populate = false;
    graph_props.type="cart";
    var aWhichGraph=/(c|p|a)(\d)/.exec(which_graph);
    if ( aWhichGraph==null ) aWhichGraph=["","c","1"];
    var isGraph = (aWhichGraph[1]=="c" || aWhichGraph[1]=="a");
    var connectPoints=false;
    var plotPoints=false;
    var wait = false;
    switch(aWhichGraph[1]) {
        case "p":
            var which_series="p"+aWhichGraph[2];
            plotPoints=true;
            break;
        case "a":
            var which_series="a"+aWhichGraph[2];
            break;
        default:
            var which_series="c"+aWhichGraph[2];
    }
    graph_props.graph=which_series;
%    \end{macrocode}
% Get domain and range of x and y, respectively
% obtain in math environment so we can evaluate
% any symbolic constants, such as \texttt{Math.PI}
%    \begin{macrocode}
    if (afInteractive) var oDR = getDomRng (baseName);
    else {
        wait=graph_props.wait;
        populate = graph_props.populate;
        var oDR = arguments[5];
        if (populate) populateDomRng(baseName,oDR);
        for ( var o in oDR ) oDR[o] = EvalParse(oDR[o]);
    }
    aGraphData[baseName].aDomRngs = oDR;
%    \end{macrocode}
% calculate width of intervals. If the user has passed a subinterval to us, then
% \texttt{oDR.x\_min} would be defined, and we use it to compute the range.
%    \begin{macrocode}
    var rng_x = (typeof oDR.x_u=="undefined") ?
        (oDR.x_max - oDR.x_min) : (oDR.x_u - oDR.x_l);
    /* Get the function and calculated the plotted points */
    if (afInteractive) {
        var n = Number(this.getField(baseName+"numNodes").value);
        if ( isNaN(n) || n <=0 ) n = \af@defaultNumPoints;
    } else {
        var f = ParseInput(arguments[2+1]);
        var n = Number(arguments[2+2]);
        if (populate) {
            this.getField(baseName+"theFunction").value=arguments[2+1];
            this.getField(baseName+"numNodes").value=n;
        }
        if (isGraph) {
%    \end{macrocode}
% Is there a function there? We use n to determine
% that, if $n > 0$ we assume a function; otherwise, we
% assume plotted points to be connected.
%    \begin{macrocode}
            connectPoints = ( n <= 0 );
            if ( connectPoints ) plotPoints = true;
        // passing points to be plotted, not connected
        } else plotPoints = true;
    }
%    \end{macrocode}
% Before we calculate the points, let's record what we are graphing.
%    \begin{macrocode}
    if (afInteractive || populate)
        updateGraphData(graph_props,baseName,f);
%    \end{macrocode}
% Now we begin calculating the points to plot.
%    \begin{macrocode}
    var plot_x, plot_y;
    var x = (typeof oDR.x_u=="undefined") ? oDR.x_min : oDR.x_l;
    var h = rng_x / n;
    var thismax = (typeof oDR.x_u=="undefined") ? oDR.x_max : oDR.x_u;
%    \end{macrocode}
% The plotted data will be accumulated as XML
%    \begin{macrocode}
    var cPlotData=<points></points>;
%    \end{macrocode}
% We strip out anything of the form \texttt{"y = "}, \texttt{"x = "} or \texttt{"r = "},
% allowing the user to enter the expressions in equational form \verb!"y = x^2"!, for example.
%    \begin{macrocode}
    var aSearchResults=/(([a-zA-Z])\s*=\s*)/.exec(f);
    if ( aSearchResults != null) {
        if ( aSearchResults[2] != "y" && aSearchResults[2] != "r" ) {
            syntaxError(); return;
        }
    }
%    \end{macrocode}
% This allows functions of the form $y=f(x)$, $r=f(x)$, $y=f(t)$, $r=f(t)$.
%    \begin{macrocode}
    f = f.replace(/(([a-zA-Z])\s*=\s*)/g,"");
%    \end{macrocode}
%    \begin{macrocode}
    if ( isGraph && !plotPoints ) {
        for (var i=0; i<=n; i++)
        {
%    \end{macrocode}
% We evaluate the function, and try to detect any errors. If an exception is thrown,
% we display an \textsf{exerquiz} \texttt{syntaxError()} message. If the result is not
% a number, we skip over it.
%    \begin{macrocode}
            try { with(Math) {_y = eval(f);} }
            catch(e) {
%    \end{macrocode}
% We have thrown an exception, so either this is bad code, or the user wants us
% to plot this as a polar function. We'll try, but if we're wrong, we'll throw an
% exception in \texttt{Graph\_xyt()}.
%    \begin{macrocode}
                var paraEqs = "("+f+")*Math.cos(t);("+f+")*Math.sin(t)";
                graph_props.type="polar";
                this.getField(baseName
                    +"theHiddenFunction").value=paraEqs;
                Graph_xyt(graph_props, baseName, pNum);
                return;
            }
            // If not a number then skip over.
            if (isFinite(_y))
            {
                plot_x = util.printf("\%.10f", x);
                plot_y = util.printf("\%.10f", _y);
%    \end{macrocode}
% We add the latest data point to the end of the XMList
%    \begin{macrocode}
                cPlotData.points[cPlotData..point.length()]=
                <point><x>{plot_x}</x><y>{plot_y}</y></point>
            }
            x += h;
        }
    } else { // prepare to data for plotting
%    \end{macrocode}
% At this point the variable f should be a string of
% points to plot.\\
% \hspace*{30pt}\texttt{f = "(0,1);(2,2);(4,2);...;(5,3)"}.\\
% It's not clear whether the abcissas need to be sorted in
% increasing order, or whether FLEX is smart enough to do
% that. We'll assume the latter case.
%    \begin{macrocode}
        var afBegin = (f.indexOf("\(")+1);
        var afEnd = f.lastIndexOf("\)");
        cPlotData=f.substring(afBegin,afEnd);
        var re = /\)\s*;\s*\(/;
        aPlotData= cPlotData.split(re);
        var cPlotData=<points></points>;
        with (Math) {
            for ( var i=0; i<aPlotData.length; i++) {
                var cTmp = "["+aPlotData[i]+"]";
                var aTmp = eval(cTmp);
%    \end{macrocode}
% We add the latest data point to the end of the XMList
%    \begin{macrocode}
                cPlotData.points[cPlotData..point.length()]=
                <point><x>{aTmp[0]}</x><y>{aTmp[1]}</y></point>
            }
        }
    }
    cPlotData=cPlotData.toXMLString();
    var annot = this.getAnnotRichMedia(pNum,"afRM"+baseName);
    if ( annot )
    {
        if (!annot.activated || wait ) {
            annot.activated=true;
            afWait4Activation(
                graph_props,baseName,pNum,oDR,cPlotData,50);
        }
        else
            annot.callAS("getPlotData", graph_props, oDR, cPlotData);
    }
}
%    \end{macrocode}
% \DescribeMacro{Graph\_xyt} This function graphs a set of parametric equations in the
% rectangular coordinate system.  The function pair is delimited by a semi-colon, early
% in the code we get the function and test whether the function has a semi-colon in its
% definition, so not, we send assume it is a function of a single variable, and send it
% off to \texttt{Graph\_xy}.
%
% For silent mode, the parameters are the same, except that there are two extra arguments,
% the endpoints of the parameter, $t$. The last argument is a Boolean, the author wants the
% graphing data to populate the corresponding fields so user can manipulate.
%    \begin{macrocode}
function Graph_xyt(graph_props, baseName, pNum)
{
    _mathVars="t";
    var which_graph=graph_props.graph;
    var populate = false;
    var afInteractive = (arguments.length <= 3);
    if (afInteractive) {
        var f = this.getField(baseName+"theHiddenFunction").value;
        if ( ck4PtsRe.test(f) || (f.indexOf(";")==-1) ) {
            Graph_xy(graph_props, baseName, pNum);
            return;
        }
        f = this.getField(baseName+"theHiddenFunction").value;
    }
    createGraphData(baseName);
    if ( graph_props.type!="polar") graph_props.type="para";
    var aWhichGraph=/(c|p|a)(\d)/.exec(which_graph);
    if ( aWhichGraph==null ) aWhichGraph=["","c","1"];
    var isGraph = (aWhichGraph[1]=="c" || aWhichGraph[1]=="a");
    var connectPoints=false;
    var plotPoints=false;
    var wait=false;
    switch(aWhichGraph[1]) {
        case "p":
            var which_series="p"+aWhichGraph[2];
            plotPoints=true;
            break;
        case "a":
            var which_series="a"+aWhichGraph[2];
            break;
        default:
            var which_series="c"+aWhichGraph[2];
    }
    graph_props.graph=which_series;
%    \end{macrocode}
% Get domain and range of x and y, respectively
% obtain in math environment so we can evaluate
% any symbolic constants, such as \texttt{Math.PI}
%    \begin{macrocode}
    if (afInteractive) {
        var oDR = getDomRng (baseName);
        var oDp = getParaDom (baseName);
    }
    else {
        wait=graph_props.wait;
        populate = graph_props.populate;
        var oDR = arguments[5];
        if (populate) populateDomRng(baseName,oDR);
        for ( var o in oDR ) oDR[o] = EvalParse(oDR[o]);
        var oDp = arguments[6];
        if (populate) populateParaDom(baseName,oDp);
        for ( var o in oDp ) oDp[o] = EvalParse(oDp[o]);
    }
    aGraphData[baseName].aDomRngs = oDR;
    aGraphData[baseName].aDom_P = oDp;
%    \end{macrocode}
% calculate width of intervals
%    \begin{macrocode}
    var rng_t = oDp.t_max - oDp.t_min;
    /* Get the function and calculated the plotted points */
    if (afInteractive) {
        var n = Number(this.getField(baseName+"numNodes").value);
        if ( isNaN(n) || n <=0 ) n = \af@defaultNumPoints;
    } else {
%    \end{macrocode}
% If this is polar, then we need to check if it has been parsed yet.
%    \begin{macrocode}
        var f = arguments[2+1];
        if ( graph_props.type=="polar") {
             if(f.indexOf(";")==-1) {
                f = "("+f+")*cos(t);("+f+")*sin(t)";
                f = ParseInput(f);
             }
        } else
            f = ParseInput(f);
        var n = Number(arguments[2+2]);
        if (populate) {
            this.getField(baseName+"theHiddenFunction").value=f;
            this.getField(baseName+"theFunction").value=arguments[2+1];
            this.getField(baseName+"numNodes").value=n;
        }
        if (isGraph) {
%    \end{macrocode}
% Is there a function there? We use n to determine
% that, if $n > 0$ we assume a function; otherwise, we
% assume plotted points to be connected.
%    \begin{macrocode}
            connectPoints = ( n <= 0 );
            if ( connectPoints ) plotPoints = true;
        // passing points to be plotted, not connected
        } else plotPoints = true;
    }
%    \end{macrocode}
% Before we calculate the points, let's record what we are graphing.
%    \begin{macrocode}
    if (afInteractive || populate)
        updateGraphData(graph_props,baseName,f);
%    \end{macrocode}
% We strip out anything of the form \texttt{"y = "}, \texttt{"x = "} or \texttt{"r = "},
% allowing the user to enter the expressions in equational form \texttt{"r = 1+sin(t)"},
% or \texttt{x=sin(t); y = cos(t)}, for example.
%    \begin{macrocode}
    var aFunction = f.split(";");
    var x_function = aFunction[0];
    var y_function = aFunction[1];
    var aSearchResults=/(([a-zA-Z])\s*=\s*)/.exec(x_function);
    if ( aSearchResults != null && aSearchResults[2] != "x") {
            syntaxError(); return;
    }
    x_function = x_function.replace(/(([a-zA-Z])\s*=\s*)/g,"");
    aSearchResults=/(([a-zA-Z])\s*=\s*)/.exec(y_function);
    if ( aSearchResults != null && aSearchResults[2] != "y") {
            syntaxError(); return;
    }
    y_function = y_function.replace(/(([a-zA-Z])\s*=\s*)/,"");
    var plot_x, plot_y;
    var t = oDp.t_min;
    var h = rng_t / n;
    var thismax = oDp.t_max;
%    \end{macrocode}
% The plotted data will be accumulated as XML
%    \begin{macrocode}
    var cPlotData=<points></points>;
%    \end{macrocode}
%    \begin{macrocode}
    if ( isGraph && !plotPoints ) {
        for (var i=0; i<=n; i++)
        {
%    \end{macrocode}
% We evaluate the function, and try to detect any errors. If an exception is thrown,
% we display an \textsf{exerquiz} \texttt{syntaxError()} message. If the result is not
% a number, we skip over it.
%    \begin{macrocode}
            try {
                with(Math) {
                    _x = eval(x_function);
                    _y = eval(y_function);
               }
            } catch(e) { syntaxError(); return;}
            // If not a number then skip over.
            if (isFinite(_x)&&isFinite(_y))
            {
                plot_x = util.printf("\%.10f", _x);
                plot_y = util.printf("\%.10f", _y);
%    \end{macrocode}
% We add the latest data point to the end of the XMList
%    \begin{macrocode}
                cPlotData.points[cPlotData..point.length()]=
                <point><x>{plot_x}</x><y>{plot_y}</y></point>
            }
            t += h;
        }
    } else { // prepare to data for plotting
%    \end{macrocode}
% At this point the variable f should be a string of
% points to plot.\\
% \hspace*{30pt}\texttt{f = "(0,1);(2,2);(4,2);...;(5,3)"}.\\
% It's not clear whether the abcissas need to be sorted in
% increasing order, or whether FLEX is smart enough to do
% that. We'll assume the latter case.
%    \begin{macrocode}
        var afBegin = (f.indexOf("\(")+1);
        var afEnd = f.lastIndexOf("\)");
        cPlotData=f.substring(afBegin,afEnd);
        var re = /\)\s*;\s*\(/;
        aPlotData= cPlotData.split(re);
        var cPlotData=<points></points>;
        with (Math) {
            for ( var i=0; i<aPlotData.length; i++) {
                var cTmp = "["+aPlotData[i]+"]";
                var aTmp = eval(cTmp);
%    \end{macrocode}
% We add the latest data point to the end of the XMList
%    \begin{macrocode}
                cPlotData.points[cPlotData..point.length()]=
                <point><x>{aTmp[0]}</x><y>{aTmp[1]}</y></point>
            }
        }
    }
    cPlotData=cPlotData.toXMLString();
    var annot = this.getAnnotRichMedia(pNum,"afRM"+baseName);
    if ( annot )
    {
        if (!annot.activated || wait ) {
            annot.activated=true;
            afWait4Activation(
                graph_props,baseName,pNum,oDR,cPlotData,50);
        }
        else
            annot.callAS("getPlotData", graph_props, oDR, cPlotData);
    }
}
function createGraphData(baseName)
{
    if( aGraphData[baseName] == undefined ) {
        aGraphData[baseName] = new Object();
        aGraphData[baseName].aDomRngs=new Object();
        aGraphData[baseName].aDom_P=new Object();
        aGraphData[baseName].current = new Array();
    }
}
%    \end{macrocode}
% This function is called by the \texttt{Graph\_xy} or \texttt{Graph\_xyt}
% and updates the graphing data we are trying to track.
%
% Properties of the object
% \verb!aGraphData[baseName].current[which_graph]! object are
% \texttt{hiddenFN} (a string of the hidden JS version of the
% function), \texttt{appearFN} (a string of the function the user
% sees), and \texttt{graph\_props} (the graph properties passed from
% \texttt{Graph\_xy} or \texttt{Graph\_xyt}.
%    \begin{macrocode}
function updateGraphData(graph_props,baseName,f)
{
    var which_graph=graph_props.graph;
    if (aGraphData[baseName].current[which_graph] == undefined)
        aGraphData[baseName].current[which_graph]=new Object();
    aGraphData[baseName].current[which_graph].appearFN
        =this.getField(baseName+"theFunction").value;
    aGraphData[baseName].current[which_graph].hiddenFN=f;
    aGraphData[baseName].current[which_graph].graph_props=graph_props;
}
\end{newsegment}
%    \end{macrocode}
% When there are more than three arguments, we are in non-interactive mode.
% The 4th-7th arguments are the domain and range that the graph should be
% set to on reset.
%
% In the flash widget, we call the function \texttt{clearPlotData}, the parameters
% of which are
%\begin{verbatim}
%    clearPlotData(graph_props:Object, oDR:Object)
%\end{verbatim}
%    \begin{macrocode}
\begin{newsegment}{AF: Supporting Form Fields}
function clearGraph(graph_opts,baseName, pNum)
{
    which_graph=graph_opts.graph;
    var aWhichGraph=/(c|p|a)(\d)/.exec(which_graph);
    if ( aWhichGraph==null ) aWhichGraph=["","c","1"];
    var isGraph = (aWhichGraph[1]=="c" || aWhichGraph[1]=="a");
    switch(aWhichGraph[1]) {
        case "p":
            var which_series="p"+aWhichGraph[2];
            break;
        case "a":
            var which_series="a"+aWhichGraph[2];
            break;
        default:
            var which_series="c"+aWhichGraph[2];
    }
    ProcessIt = false;
    afResetForms = new Array ();
    for (var i=0; i<afSuffixes.length; i++)
        afResetForms.push(baseName+afSuffixes[i]);
    this.resetForm(afResetForms);
    ProcessIt = true;
%    \end{macrocode}
% Now reset the array of graphs plotted.
%    \begin{macrocode}
    if ( aGraphData[baseName] == undefined ) return;
    try { aGraphData[baseName].current = new Array(); } catch(e) {}
    var oDR = getDomRng (baseName);
    var annot = this.getAnnotRichMedia(pNum,"afRM"+baseName);
    if ( annot )
    {
        annot.callAS("clearPlotData", {graph:"all"}, oDR);
    }
    if (event.shift) annot.activated=false;
}
function stripBrackets(aStr) {
    var afBegin = (aStr.indexOf("[")+1);
    var afEnd = aStr.lastIndexOf("]");
    aStr= aStr.substring(afBegin,afEnd);
    return aStr;
}
function EvalParse(str) {
    return eval(ParseInput(String(str)));
}
function getDomRng (baseName)
{
    var x_min, x_max, y_min, y_max;
    if ( baseName == null )
        return { x_min: \af@DefaultDomMin, y_min: \af@DefaultRngMin,
        x_max: \af@DefaultDomMax, y_max: \af@DefaultRngMax };
    var f = this.getField(baseName+"theHiddenDom.min");
    if ( f == null ) {
        f = aGraphData[baseName].aDomRngs;
        if ( f == null )
            aGraphData[baseName].aDomRngs = {
                  x_min: \af@DefaultDomMin, y_min: \af@DefaultRngMin,
                  x_max: \af@DefaultDomMax, y_max: \af@DefaultRngMax };
    } else {
        x_min=eval(this.getField(baseName+"theHiddenDom.min").value);
        x_max=eval(this.getField(baseName+"theHiddenDom.max").value);
        y_min=eval(this.getField(baseName+"theHiddenRng.min").value);
        y_max=eval(this.getField(baseName+"theHiddenRng.max").value);
        aGraphData[baseName].aDomRngs={
            x_min: x_min, y_min: y_min,
            x_max: x_max,y_max: y_max };
    }
    return aGraphData[baseName].aDomRngs;
}
function populateDomRng(baseName,oDR)
{
    try{this.getField(baseName+"theDom.min").value=oDR.x_min}catch(e){};
    try{this.getField(baseName+"theDom.max").value=oDR.x_max}catch(e){};
    try{this.getField(baseName+"theRng.min").value=oDR.y_min}catch(e){};
    try{this.getField(baseName+"theRng.max").value=oDR.y_max}catch(e){};
}
function getParaDom (baseName)
{
    var t_min, t_max;
    if ( baseName == null )
        return { t_min: \af@DefaultDomMint, t_max: \af@DefaultDomMaxt };
    var f = this.getField(baseName+"theHiddenDom_t.min");
    if ( f == null ) {
        f = aGraphData[baseName].aDom_P;
        if ( f == null )
            aGraphData[baseName].aDom_P = {
                t_min: \af@DefaultDomMint,
                t_max: \af@DefaultDomMaxt };
    } else {
        t_min=eval(this.getField(baseName+"theHiddenDom_t.min").value);
        t_max=eval(this.getField(baseName+"theHiddenDom_t.max").value);
        aGraphData[baseName].aDom_P={ t_min: t_min, t_max: t_max };
    }
    return aGraphData[baseName].aDom_P;
}
function populateParaDom(baseName,oDp)
{
    try{this.getField(baseName+"theDom_t.min").value=oDp.t_min}
        catch(e){};
    try{this.getField(baseName+"theDom_t.max").value=oDp.t_max}
        catch(e){};
}
function afWait4Activation (graph_props, baseName, pNum,%
oDR, cPlotData, delay) {
    var annotName = "afRM"+baseName;
    scratchCounter += 1;
    aTimeOutArray[scratchCounter] = app.setTimeOut(%
'this.getAnnotRichMedia('+pNum+',"'
    +annotName+'").callAS("getPlotData",'
    + 'aTimeOutArray['+scratchCounter+'].graph_props,'
    + 'aTimeOutArray['+scratchCounter+'].oDR,'
    + 'aTimeOutArray['+scratchCounter+'].cPlotData)',50);
    aTimeOutArray[scratchCounter].graph_props=graph_props;
    aTimeOutArray[scratchCounter].oDR=oDR;
    aTimeOutArray[scratchCounter].cPlotData=cPlotData;
}
function shiftHorVert (baseName,pNum,horVert,posNeg) {
    var amtShift=baseName+"amtshift";
    if ( horVert=="h" ) {
        var LEP = baseName+"theDom.min";
        var UEP= baseName+"theDom.max";
    } else {
        var amtShift=baseName+"amtshift";
        var LEP = baseName+"theRng.min";
        var UEP= baseName+"theRng.max";
    }
    var amtSft=this.getField(amtShift).value
    amtSft=EvalParse(amtSft);
    var gf_l=this.getField(LEP);
    var gfv_l=Number(EvalParse(gf_l.value));
    gf_l.value = (posNeg=="+") ?
        (gfv_l+(Math.abs(amtSft))) : (gfv_l-(Math.abs(amtSft)));
    gf_u=this.getField(UEP);
    gfv_u=Number(EvalParse(gf_u.value));
    gf_u.value = (posNeg=="+") ?
        (gfv_u+(Math.abs(amtSft))) : (gfv_u-(Math.abs(amtSft)));
    var g = aGraphData[baseName].aDomRngs;
    var oPts = this.getField(baseName+"numNodes");
    var nPts = ( oPts == null ) ? \af@defaultNumPoints : oPts.value;
    if ( horVert=="h" ) {
        g.x_min=gf_l.value;g.x_max=gf_u.value;
    } else {
        g.y_min=gf_l.value;g.y_max=gf_u.value;
    }
    var p = aGraphData[baseName].aDom_P;
    for ( var o in aGraphData[baseName].current )
    {
        var gd = aGraphData[baseName].current[o];
        gd.graph_props.populate=true;
        if ( gd.graph_props.type=="cart" ) {
            Graph_xy(gd.graph_props,baseName,pNum,
            gd.appearFN,nPts,g);
        } else { // gd.graph_props.type=="para"
            Graph_xyt(gd.graph_props,baseName,pNum,
            gd.appearFN,nPts,g,p);
        }
    }
}
function zoomInOut (baseName,pNum,posNeg) {
    var amtShift=baseName+"amtshift";
    var g = aGraphData[baseName].aDomRngs;
    var oPts = this.getField(baseName+"numNodes");
    var nPts = ( oPts == null ) ? \af@defaultNumPoints : oPts.value;
// Begin horizontal calculations
    var LEP = baseName+"theDom.min";
    var UEP= baseName+"theDom.max";
    var amtSft=this.getField(amtShift).value
    amtSft=EvalParse(amtSft);
    var gf_l=this.getField(LEP);
    var gfv_l=Number(EvalParse(gf_l.value));
    gf_l.value = (posNeg=="+") ?
        (gfv_l+(Math.abs(amtSft))) : (gfv_l-(Math.abs(amtSft)));
    gf_u=this.getField(UEP);
    gfv_u=Number(EvalParse(gf_u.value));
    gf_u.value = (posNeg=="+") ?
        (gfv_u-(Math.abs(amtSft))) : (gfv_u+(Math.abs(amtSft)));
%    \end{macrocode}
% Update the \texttt{aGraphData[baseName].aDomRngs} object for horizontal parameters
%    \begin{macrocode}
    g.x_min=gf_l.value;
    g.x_max=gf_u.value;
// Begin vertical calculations
    var LEP = baseName+"theRng.min";
    var UEP= baseName+"theRng.max";
    var gf_l=this.getField(LEP);
    var gfv_l=Number(EvalParse(gf_l.value));
    gf_l.value = (posNeg=="+") ?
        (gfv_l+(Math.abs(amtSft))) : (gfv_l-(Math.abs(amtSft)));
    gf_u=this.getField(UEP);
    gfv_u=Number(EvalParse(gf_u.value));
    gf_u.value = (posNeg=="+") ?
        (gfv_u-(Math.abs(amtSft))) : (gfv_u+(Math.abs(amtSft)));
%    \end{macrocode}
% Update the \texttt{aGraphData[baseName].aDomRngs} object for vertical parameters
%    \begin{macrocode}
    g.y_min=gf_l.value;
    g.y_max=gf_u.value;
    var p = aGraphData[baseName].aDom_P;
    for ( var o in aGraphData[baseName].current )
    {
        var gd = aGraphData[baseName].current[o];
        if ( gd.graph_props.type=="cart" ) {
            Graph_xy(gd.graph_props,baseName,pNum,
            gd.appearFN,nPts,g);
        } else { // gd.graph_props.type=="para"
            Graph_xyt(gd.graph_props,baseName,pNum,
            gd.appearFN,nPts,g,p);
        }
    }
}
function saveDelSelAction (baseName)
{
    var f = this.getField(baseName+"theFunction");
    var s = this.getField(baseName+"ComboSelect");
    if ( f != null && s != null ) {
        var nIndx = s.currentValueIndices;
        var cExportV=s.getItemAt(s.currentValueIndices,true);
        var cAppearV=s.getItemAt(s.currentValueIndices,false);
        if (event.shift) {
            s.deleteItemAt(s.currentValueIndices);
            s.insertItemAt(cAppearV,("<"+cAppearV+"\afunused>"),nIndx);
            s.currentValueIndices=nIndx;
            f.value="<"+cAppearV+"\afunused>";
        } else {
            var newFunc = f.value;
            var newFunc_tmp = newFunc.replace(/\s/g,"");
            if ( newFunc_tmp == "" ) {
                app.alert({cTitle:"AcroFLeX Graphing",
                    cMsg:saveDelSelAlerti});
            } else { // something there, let's test it
                if(/\afploti/.test(cAppearV) ) {
                    if (ck4PtsRe.test(newFunc)) {
                    // A set of points to plot
                        s.deleteItemAt(s.currentValueIndices);
                        s.insertItemAt(cAppearV,newFunc,nIndx);
                        s.currentValueIndices=nIndx;
                    } else {/* does not appear to be a point */
                        app.alert({cTitle:"AcroFLeX Graphing",
                            cMsg:saveDelSelAlertii});
                    }
                } else {/* not plot, must be curve*/
                    s.deleteItemAt(s.currentValueIndices);
                    s.insertItemAt(cAppearV,newFunc,nIndx);
                    s.currentValueIndices=nIndx;
                }
            }
        }
    }
}
function graphBtnAction (baseName,pNum)
{
    var s = this.getField(baseName+"ComboSelect");
    var d;
    var d, plot_curve="c1";
    if ( s != null ) {
        var nIndx = s.currentValueIndices;
        var cAppearV=s.getItemAt(s.currentValueIndices,false);
        if ( ( d = /\afploti\s+(\d)/.exec(cAppearV) ) != null ) {
            plot_curve="p"+d[1];
        } else {
            if ( ( d = /\afcurvei\s+(\d)/.exec(cAppearV) ) != null ) {
                plot_curve="c"+d[1];
            } else {
                app.alert({cTitle:"AcroFLeX Graphing",
                    cMsg:graphBtnAlerti});
            }
        }
    }
    Graph_xy({graph:plot_curve},baseName,pNum);
}
function afsplitInterval(cInterval)
{
    var aDomTmp=stripBrackets(cInterval);
    aDomTmp=aDomTmp.split(",");
    return { LEP: aDomTmp[0], UEP: aDomTmp[1] };
}
\end{newsegment}
\begin{newsegment}{AF: Keystroke/Formatting Functions}
function keystrokeDomRng (fname)
{
    if (event.willCommit) {
        var retn = ParseInput(event.value);
        if ( !retn ) event.rc = false;
        else {
            try { eval ( retn ) }
            catch(e) {
                app.alert({cTitle:"AcroFLeX Graphing",
                    cMsg:badNumberMsg});
                event.rc=false;
            };
        }
    }
}
function formatFileInput (fname)
{
    this.getField(fname).value = ParseInput(event.value);
}
function formatVarIntervals (fname)
{
    var val = Number(EvalParse(event.value));
    this.getField(fname).value = val;
}
function formatFunctionInput (fname)
{
    var val = ParseInput(event.value);
    this.getField(fname).value = val;
}
function keystrokeFunctionInput ()
{
    if (event.willCommit) {
        var str = event.value.replace(/\s/g,"");
        if ( str == "" ) {
            app.alert({cTitle:"AcroFleX Graphing",
            cMsg:saveDelSelAlerti});
            event.rc = false;
        }
    }
}
function keystrokeNumPoints ()
{
    try{
        var val = Number(EvalParse(event.value));
    } catch(e) {
        app.alert({cTitle:"AcroFLeX Graphing",
            cMsg:badNumberMsg});
         event.rc=false;
         return;
    }
    if ( val < 0 ) {
        app.alert({cTitle:"AcroFLeX Graphing",
            cMsg:negNumberMsg});
    } else {
        if ( val == 0 ) {
            app.alert({cTitle:"AcroFLeX Graphing",
                cMsg:zeroNumberMsg});
            val = \af@defaultNumPoints;
        }
    }
    event.value = Math.ceil(Math.abs(val));
}
function keystrokeAmtShift()
{
    try{
        var val = Number(EvalParse(event.value));
    } catch(e) {
        app.alert({cTitle:"AcroFLeX Graphing",
            cMsg:badNumberMsg});
         event.rc=false;
         return;
    }
    if ( val < 0 ) {
        app.alert({cTitle:"AcroFLeX Graphing",
            cMsg:negShiftMsg});
    } else {
        if ( val == 0 ) {
            app.alert({cTitle:"AcroFLeX Graphing",
                cMsg:zeroShiftMsg});
            val = 1;
        }
    }
    event.value = Math.abs(val);
}
\end{newsegment}
\begin{newsegment}{AF: Support for Custom Graphing Problems}
%    \end{macrocode}
% A general purpose function for graphing that takes into consideration all the
% parameters. This is used by the \cs{sgraphLink} and for any JS code that uses
% custom methods. The command \cs{defineGraphJS} is used to set up the parameters
% for this function..
%    \begin{macrocode}
function Graph_xytJS (func,xI,yI,xP,tI,graph,populate,wait,%
type,form,gName,nPts) {
    var oDom = afsplitInterval(xI);
    var oRng = afsplitInterval(yI);
    var oPlotD = afsplitInterval(xP);
    var oP=new Object(), oD=new Object(), oDt=new Object();
    oP.graph=graph;
    oP.populate=populate;
    oP.wait=wait;
    if (type!="") oP.type=type;
    if (form!="") oP.form=form;
    oD={x_min:oDom.LEP,x_max:oDom.UEP,y_min:oRng.LEP,y_max:oRng.UEP,x_l:oPlotD.LEP,x_u:oPlotD.UEP};
    if ( tI=="") {
        Graph_xy(oP,gName,this.pageNum,func,nPts,oD);
    } else {
        var oDom_t = afsplitInterval(tI);
        oDt={t_min:oDom_t.LEP,t_max:oDom_t.UEP};
        Graph_xyt(oP,gName,this.pageNum,func,nPts,oD,oDt);
    }
}
\end{newsegment}
\end{insDLJS*}
%    \end{macrocode}
% Lastly, we define a \texttt{willClose} code and an \texttt{execJS}
% code. The first comes in on the ``developer's hook'' so the user
% can still use the \texttt{willClose} environment without disturbing
% this code. When the document starts to close, we deactivate all
% rich media annotations, to prevent exceptions from being thrown.
%    \begin{macrocode}
\begin{defineJS}{\af@WillClose}
for (var n=0; n<this.numPages; n++) {
    var rm = this.getAnnotsRichMedia(n);
    if ( rm != undefined) {
        for (var i=0; i<rm.length; i++ ) rm[i].activated=false;
    }
}
\end{defineJS}
%    \end{macrocode}
% We save any other developer \texttt{willClose} code, and define ours, after
% replacing any older developer \texttt{willClose} code.
%    \begin{macrocode}
\let\af@save@developer@will@Close\developer@will@Close
\def\developer@will@Close{%
    \af@save@developer@will@Close
    \af@WillClose
}
%    \end{macrocode}
% We reset only the form fields in the document created by \textsf{acroflex} and use
% a format script. What this does is to make Acrobat execute the format code
% of any text field (or combo box). The formatting code I've placed causes
% the default functions and values such as \verb!x^2! to be parse, and place
% in the hidden field. This code is used only once when the document is
% first opened by Acrobat then thrown away. The document author needs to
% save the document after opening.
%    \begin{macrocode}
\begin{execJS}{afreset}
% try {this.resetForm()} catch(e){};
var aResetFields=new Array();
var fname;
var re=/theFunction|theDom|theRng/;
for (var i=0; i< this.numFields; i++) {
    fname = this.getNthFieldName(i);
    if ( re.test(fname) ) aResetFields.push(fname);
}
if (aResetFields.length !=0)
    try {this.resetForm(aResetFields)} catch(e){};
\end{execJS}
%    \end{macrocode}
% We input a customization file for the document author to enter language localizations
% for the tooltip, for example. This file can be placed in the folder of the source file
% of elsewhere on the {\LaTeX} search path.
%    \begin{macrocode}
\InputIfFileExists{\af@lang@type}{}{%
    \PackageWarning{acroflex}{Could not find the language file
    \af@lang@type,\MessageBreak please place this file on the latex
    search path.}
}
%    \end{macrocode}
%\changes{v1.6}{2015/10/13}{Restore catcodes of subscript and superscript}
% Restore catcodes of subscript and superscript to other.
%    \begin{macrocode}
\af@restoreCats
%</package>
%    \end{macrocode}
% \section{History}
% This initial roll-out of {\AcroFLeX} occurred on 07/06/08 with version v0.4e.
% Changes since then are listed below.
%\begin{itemize}
%   \item (2008/09/26 v0.5b) System freezes when the \cs{domMinP} and \cs{domMaxP} macros are not present, and the
%   user enters a function of $t$.  Put in some tests to prevent this from happening.
%   \item (2008/09/23 v0.5a) Fixed a problem that JS goes into an infinite loop when a non-functional
%   expression is in the function input field.
%   \item (2008/07/26 v0.5) Worked on compatibility issues with the \texttt{unicode} option of \textsf{hyperref}.
%   Defined two commands \cs{eq@nuDV} and \cs{eq@nuV} (in \textsf{eforms}) which prevents hyperref from converting the text to
%   octal notation. These are used in the fields that take functions as their initial values, now \verb!x^2!
%   does not raise a problem with hyperref even when in unicode mode. Also, made some changes to eforms.dtx
%   concerning \cs{r} and \cs{t}. When in unicode mode, these two have to be redefined to \cs{textCR} and
%   \cs{textHT}, respectively.
%   \item (2008/07/24 v0.4g) Fixed a problem with entering points through the user interface. Now fixed.
%   \item (2008/07/18 v0.4f) Identified a problem with parametric equations (interactive mode),
%   when one of the expressions involves a power. The system went into an infinite loop, jumping
%   between \texttt{Graph\_xy} and \texttt{Graph\_xyt}. Changed the early test to \texttt{theFunction}
%   rather than \texttt{theHiddenFunction}.
%   \item[] Added the new series \texttt{a1}, \texttt{a2}, \texttt{a3}, and \texttt{a4} as values of the graph key of \cs{sgraphLink}. These are similar to the c counterparts, but
%   shade in the graph between the x-axis and the graph.  For parametric equations, the results seem
%   good, but could be unpredictable.
%\end{itemize}
%  \Finale
\endinput